A Polynomial-Time Interior-Point Method for Conic Optimization, With Inexact Barrier Evaluations

نویسندگان

  • Simon P. Schurr
  • Dianne P. O'Leary
  • André L. Tits
چکیده

We consider a primal-dual short-step interior-point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the primal and dual barrier functions is either impossible or prohibitively expensive. As our main contribution, we show that if approximate gradients and Hessians of the primal barrier function can be computed, and the relative errors in such quantities are not too large, then the method has polynomial worst-case iteration complexity. (In particular, polynomial iteration complexity ensues when the gradient and Hessian are evaluated exactly.) In addition, the algorithm requires no evaluation—or even approximate evaluation—of quantities related to the barrier function for the dual cone, even for problems in which the underlying cone is not self-dual.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Primal-dual Interior-Point Methods with Asymmetric Barriers

In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible to develop very efficient optimization met...

متن کامل

"Cone-free" primal-dual path-following and potential-reduction polynomial time interior-point methods

We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the problem (as is, without a conic...

متن کامل

Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over symmetric cones using a wide neighborhood of the central path. The convergence is shown for a commutative family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and semidefinite programs. This extends the work of Rangarajan and Todd [8], which establi...

متن کامل

Local Quadratic Convergence of Polynomial-Time Interior-Point Methods for Conic Optimization Problems

In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2009